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a b s t r a c t

The high imperfection sensitivity of cylindrical shells under static compressive axial

loads is a well-known phenomenon in structural stability. On the other hand, less is

known of the influence of imperfections on the nonlinear vibrations of these shells

under harmonic axial loads. The aim of this work is to study the simultaneous influence

of geometric imperfections and an axial fluid flow on the nonlinear vibrations and

instabilities of simply supported circular cylindrical shells under axial load. The fluid is

assumed to be non-viscous and incompressible and the flow to be isentropic and

irrotational. The behavior of the thin-walled shell is modeled by Donnell’s nonlinear

shallow-shell equations. It is subjected to a static uniform compressive axial pre-load

plus a harmonic axial load. A low-dimensional modal expansion, which satisfies the

relevant boundary and continuity conditions, and takes into account all relevant

nonlinear modal interactions observed in the past in the nonlinear vibrations of

cylindrical shells with and without flow is used together with the Galerkin method to

derive a set of eight coupled nonlinear ordinary differential equations of motion which

are, in turn, solved by the Runge–Kutta method. The shell is considered to be initially at

rest, in a position corresponding to a pre-buckling configuration. Then, a harmonic

excitation is applied and conditions for parametric instability and dynamic snap-

through are sought. The results clarify the marked influence of geometric imperfections

and fluid flow on the dynamic stability boundaries, bifurcations and basins of attraction.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The combination of a simple geometry and proficiency as a load carrying member, particularly for axial loads and lateral
pressure, makes cylindrical shells one of the most common shell geometries in industrial applications and in nature.
Examples can be found in different engineering branches such as civil, mechanical, nuclear, aerospace and off-shore
engineering. In most of these applications cylindrical shells are used to hold or transport fluids. So, for decades, the study of
shell–fluid interaction considering a quiescent or flowing fluid has been an important research area in applied mechanics.

It is a well-established fact, backed by a large collection of theoretical and experimental results, that cylindrical shells
under several types of static load, such as axial compression, external pressure, torsion and bending, are liable to buckling
and may display a load capacity much lower than the theoretical critical load, due mainly to the effect of imperfections [1].
The most deleterious imperfections in thin cylindrical shells are the initial geometric imperfections. This is mainly due to
the highly nonlinear behavior of cylindrical shells and the reduction of membrane stiffness, modal coupling and
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interactions generated by the imperfections. Experimental results on thin cylindrical shells under static axial compression
show that they may lose stability at load levels as low as a fraction of the material’s ultimate strength [1]. In order to take
into account the effect of usually unknown imperfections in design, theoretical lower-bounds, based on nonlinear analysis
of the imperfect structure, have been proposed in the literature [2]. However, the influence of these geometric
imperfections on the vibration characteristics and nonlinear oscillations of thin shells is not well understood. In a dynamic
environment, several parameters may influence the imperfection sensitivity, such as initial conditions and load
characteristics. The addition of fluid forces makes this problem even more complicated [3]. Also, changes in the effective
stiffness due to the static pre-loading may affect drastically the dynamic response and stability characteristics of these
systems [4]. Finally, controlled experiments on cylindrical shells under dynamic loads are much more difficult to perform
and rare than in the static case [5–7].

Due to these facts, the study of the dynamics of cylindrical shells is one of the most challenging problems in nonlinear
dynamics. Although geometrical imperfections play an important role in the shell response [8,9], the great majority of the
investigations are concerned with the study of perfect structures. Also, most of these studies deal with the analysis of shells
vibrating in vacuum. Fewer studies are focused on the analysis of the nonlinear vibrations of cylindrical shells in contact
with a dense fluid.

In Amabili and Paı̈doussis [10] and Karagiosis [11], one can find very extensive literature reviews related to the nonlinear
dynamics of shells in vacuum, and shells filled with or surrounded by quiescent or flowing fluids. These topics are also
present in detail in the books by Paı̈doussis on fluid–structure interactions [3] and Amabili on nonlinear vibrations and
stability of shells and plates [12]. Here only a few key contributions will be mentioned.

The seminal work of Evensen [13] and Dowell and Ventres [14] gave the original idea to the modal expansions of the
shell flexural displacement involving the symmetric and asymmetric modes; later, the studies of Ginsberg [15] and Chen
and Babcock [16] contributed to the understanding of the influence of the companion mode on the behavior of cylindrical
shells. In the fundamental work of Gonc-alves and Batista [17] it was found that the presence of a dense fluid in the shell,
increases the softening characteristics of the frequency–amplitude relation when compared with the results for the same
shell in vacuum. In a series of important papers, Amabili et al. [18–21] studied the nonlinear free and forced vibrations of a
simply supported, circular cylindrical shell in contact with an incompressible and inviscid, quiescent or flowing dense fluid,
using Donnell’s nonlinear shallow-shell theory.

The effect of initial geometric imperfections on the dynamics of cylindrical shells has been less studied than in the static
case. Watawala and Nash [22] studied the influence of initial geometric imperfections on the free vibrations of fluid-filled
cylindrical shells and subject to seismic motions of the base. Amabili and Pellicano [23] studied the nonlinear stability of
simply supported, circular cylindrical shells in supersonic axial flow using Donnell’s nonlinear shallow-shell theory,
considering asymmetric and axisymmetric geometric imperfections. Amabili [24], using an accurate modal expansion,
studied the large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells subjected to
harmonic excitation in the neighborhood of some of the lowest natural frequencies. Pellicano and Amabili [25], using both
Donnell’s nonlinear shallow-shell and Sanders–Koiter shell theories, analyzed the dynamic stability of cylindrical shells in
the presence of static and dynamic axial loads, geometric imperfections and fluid–structure interaction. Catellani et al. [7]
analyzed the static and dynamic behavior of a compressed circular cylindrical shell with geometric imperfections using
Donnell’s nonlinear shallow-shell theory.

In this paper, an eight-degree-of-freedom model is used to study the nonlinear oscillations and instabilities of perfect
and imperfect axially loaded circular cylindrical shells with internal flowing fluid. The shell is subjected to axial time-
dependent loading, composed of two terms: a constant term and a harmonic one. To discretize the shell, the Donnell
shallow-shell equations are used together with the Galerkin method to derive a set of coupled ordinary differential
equations of motion. In order to study the nonlinear behavior of the shell, several numerical strategies were used to obtain
Poincaré maps, stability boundaries, basins of attraction and bifurcation diagrams [26].

The main interest of this investigation is to study the simultaneous effects of initial geometric imperfections and an
internal flowing fluid on the nonlinear behavior of the pre-stressed thin-walled cylindrical shell. In particular, the influence
of imperfections and fluid velocity on the stability boundaries in control space, bifurcation diagrams, critical loads and the
geometry and topology of basins of attraction are studied in detail in the vicinity of the most important resonance regions
of the axially excited shell. The combination of axial load, imperfections and fluid flow leads to a complex dynamical
behavior, which can only be clarified through a detailed parametric analysis. In this scenario, the importance of accurate
low-dimensional models for shell nonlinear analysis becomes evident [27–30]. To the authors’ knowledge, such an
investigation combining all the aforementioned perturbation sources has not been presented so far.
2. Mathematical formulation

2.1. Shell equations

Consider an imperfect thin-walled circular cylindrical shell of radius R, length L, and thickness h, containing flowing
fluid. The shell is assumed to be made of an elastic, homogeneous and isotropic material with Young’s modulus E, Poisson
ratio n, and mass density rS. The axial, circumferential and radial coordinates are denoted by x, y and z, respectively, and
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the corresponding displacements on the shell surface are denoted by u, v and w, as shown in Fig. 1. In this work the
mathematical formulation will follow that previously presented in Refs. [4,9,18,25].

The shell is subjected to an internal flowing fluid and a uniformly distributed axial load along the edges x ¼ 0 and L,
given by

ÑxðtÞ ¼ �
Pe

2p R
�

Pd

2p R
cosðotÞ, (1)

where Pe is a compressive uniform static load, Pd is the magnitude of the harmonic axial load, t is the time and o is the
forcing angular frequency.

The nonlinear equation of motion, based on the von Kármán–Donnell shallow-shell theory, in terms of a stress function
F, the radial displacement w and an initial geometric imperfection field w0, is given by
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where D ¼ Eh3=½12ð1� n2Þ� is the flexural rigidity, c (kg/m3 s) is the damping coefficient, and f and Ph are the radial
pressures applied to the surface of the shell as a consequence of, respectively, external forces and the contained flowing
fluid.

The compatibility equation is given by
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In Eqs. (2) and (3) the bi-harmonic operator is defined as r4
¼ ½q2=qx2 þ q2=ðR2qy2

Þ�2.
2.2. In-plane stresses and boundary conditions

The forces per unit length in the axial and circumferential directions, as well as the shear force are given in terms of the
stress function by [31]
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The force–displacement relationships are
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The simply supported boundary conditions for the shell are

w ¼ w0 ¼ 0 for x ¼ 0; L, (8)
h

L
R

x, (u)z, (w)

v, (θ )

U

( )tfPdPe ωcos+

Fig. 1. Shell geometry.
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and

Mx ¼ �D
q2w

qx2
þ n 1

R2

q2w

qy2

 !" #
¼ 0 for x ¼ 0; L, (9)

q2w0

qx2
¼ 0; Nx ¼ ÑxðtÞ and v ¼ 0 for x ¼ 0; L. (10)
2.3. Solution expansion for the transverse displacement

The numerical model is developed by expanding the radial displacement w in series form in the circumferential and
axial variables. From previous investigations on modal solutions for the nonlinear analysis of cylindrical shells under axial
fluid flow, a suitable expansion for the present problem is as follows [3,18]:

wðx; y; tÞ ¼ x1;1ðtÞh sinðqxÞ cosðnyÞ þ x1;1cðtÞh sinðqxÞ sinðnyÞ

þ x2;1ðtÞh sinð2qxÞ cosðnyÞ þ x2;1cðtÞh sinð2qxÞ sinðnyÞ

þ x0;1ðtÞh sinðqxÞ þ x0;3ðtÞh sinð3qxÞ þ x0;5ðtÞh sinð5qxÞ

þ x0;7ðtÞh sinð7qxÞ, (11)

where x1,1(t), x1,1c(t), x2,1(t), x2,1c(t), x0,1(t), x0,3(t), x0,5(t) and x0,7(t) are the time-dependent modal amplitudes, q ¼ mp=L and
m and n are, respectively, the number of half-waves in the axial direction and the number of waves in the radial direction.
This leads to an eight-degree-of-freedom reduced order model. This model includes the basic vibration (driven) mode, its
companion mode, four axisymmetric modes and the gyroscopic modes (driven and companion) with twice the number of
waves in the axial direction as the basic vibration mode, which becomes important at high flow velocities [3,12]. These
modes are essential to describe the most important nonlinear interactions observed in cylindrical shells under axial fluid
flow and sufficient for our purposes. However, more refined modal solutions can be found in the literature [12].

Based on the fact that the most deleterious imperfections are those that lead to the strongest coupling with the modes
adopted in (11) through the quadratic and cubic nonlinearities in Eqs. (2) and (3), the geometric imperfections are
described here as a linear combination of the same modes included in the lateral displacement expansion, namely

w0ðx; yÞ ¼ X1;1h sinðqxÞ cosðnyÞ þX1;1ch sinðqxÞ sinðnyÞ þ X2;1ðtÞh sinð2qxÞ cosðnyÞ

þ X2;1cðtÞh sinð2qxÞ sinðnyÞ þX0;1h sinðqxÞ þX0;3h sinð3qxÞ þ X0;4h sinð5qxÞ þX0;5h sinð7qxÞ, (12)

where X1,1, X1,1c, X2,1, X2,1c, X0,1, X0,3, X0,5, X0,7 are the imperfection amplitudes.
The solution for the stress function may be written as F ¼ Fh+Fp, where Fh is the homogeneous solution and Fp the

particular solution. The particular solution Fp is obtained analytically by substituting the assumed form of the lateral
deflection, w, Eq. (11), and the geometric imperfection, w0, Eq. (12), on the right-hand side of the compatibility equation (3),
and by solving the resulting linear partial differential equation together with the relevant boundary and continuity
conditions.

The homogeneous part of the stress function can be written as
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where Nx, Ny and Nxy are the average in-plane restraint stresses generated at the ends of the shell. This solution enables
one to satisfy the in-plane boundary conditions on the average [9,18].

The expansion for the radial displacement w and for the imperfection w0 satisfy the out-of-plane boundary conditions
(8) and (9) and the continuity of the circumferential displacement v:
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and the homogeneous part of the stress function satisfies the in-plane boundary conditions, Eq. (10), on the average, i.e.,

Z 2p

0
NxR dy ¼ 2pRÑxðtÞ;

Z 2p

0

Z L

0
NxyR dx dy ¼ 0. (15)

Boundary conditions (15) allow us to express the in-plane restraint stresses Nx, Ny and Nxy in terms of w and its derivatives
[8,9]:

Nx ¼ Ñx, (16)
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Nxy ¼ 0. (18)

Upon substituting the modal expressions for F, w and w0 into Eq. (2) and applying the Galerkin method, a set of six
nonlinear ordinary differential equations is obtained in terms of the time-dependent modal amplitudes x(t)i,j, having as
coefficients the imperfection amplitudes Xi,j.

2.4. Modeling of fluid–structure interaction

To determine the perturbation pressure on the shell wall, the Paı̈doussis and Denise [3] model will be adopted. In this
model, linear potential theory is used to describe the effect of the internal axially flowing fluid. The fluid is assumed to be
incompressible and non-viscous and the flow to be isentropic and irrotational. The irrotationality property is the condition
for the existence of a scalar potential function C, from which the velocity may be written as

V ¼ �rC. (19)

This potential function is equal toC ¼ �UxþF, where the first term is associated with the undisturbed mean flow
velocity U, and the second term, the unsteady component F is associated with the shell motion. The function F must satisfy
the Laplace equation and the impenetrability condition at the shell–fluid interface.

The potential function satisfies the continuity equation. Following the procedure presented in previous studies [3], the
perturbation pressure on the shell wall is found to be

Ph ¼ rF
L

mp
InðmpR=LÞ

I0nðmpR=LÞ

q2w

qt2
þ 2U

q2w

qtqx
þ U2 q

2w

qx2

 !
, (20)

where rF is the fluid density; In is the nth order modified Bessel function of the first kind and I0n is the derivative with
respect to its argument.

3. Results

Consider a thin-walled cylindrical shell with h ¼ 0.002 m, R ¼ 0.2 m, L ¼ 0.4 m, E ¼ 2.1�108 kN/m2, v ¼ 0.3, rS ¼ 7850
kg/m3 and rF ¼ 1000 kg/m3 [4,8]. For this geometry, the classical buckling load is equal to Pcr ¼ 2541.95 kN/m [31] and
occurs for (n,m) ¼ (5,1); and the critical flow velocity is Ucr ¼ 257.53 m/s. The lowest natural frequency of the fluid-filled
shell is o0 ¼ 1704.33 rad/s, which also occurs for (n,m) ¼ (5,1). The damping coefficient is defined as c ¼ 2zrso where z is
the viscous damping factor. In the present analysis, the adopted viscous damping factor is z ¼ 0.089.

3.1. Preliminary results

To check the validity and accuracy of the present methodology, Fig. 2 shows the post-critical path obtained for the
empty, axially loaded cylindrical shell, together with those obtained in Refs. [8,4]. All solutions display the same overall
behavior: as the axial load increases, the shell loses stability, displaying an initial unstable post-critical path which
becomes stable for large-amplitude displacements. Hence, clearly the system loses stability statically via a subcritical
bifurcation, displaying a softening nonlinear behavior with a large hysteresis. As can be observed, the shell loses stability at
P/Pcr ¼ 0.954, a value that is only 0.73 percent higher than in Ref. [8]. The unstable post-critical path shows slightly larger
displacements than those in Ref. [8], and the folding point is at P/Pcr ¼ 0.325, which is also 1.02 percent higher than in Ref.
[8]. For large-amplitude displacements, the post-critical path obtained is very similar to that in Ref. [8]. In fact, a critical
analysis of the literature shows that the post-buckling solution may display small quantitative differences due to small
differences in the pre-buckling displacement field and in the assumed modal expansion.

Also, in order to demonstrate the accuracy of the present methodology, the natural frequencies of the fluid-filled
cylindrical shell are obtained and the results are compared with the numerical values found in the literature. As shown in
Table 1, the frequencies obtained using the linearized Donnell theory for this shell geometry are in good agreement with
the results obtained by Pellicano and Amabili [8].

3.2. Post-critical analysis

In this section, the influence of the fluid velocity and initial imperfections on the nonlinear post-critical path of the shell
under axial load is analyzed.

Fig. 3 displays the post-critical paths of the perfect shell for increasing fluid flow velocity. As the flow velocity increases,
the critical load decreases steadily. For a fluid-filled shell without flow (U ¼ 0.0), the bifurcation point is at P/Pcr ¼ 0.955
and the folding point is observed at P/Pcr ¼ 0.325; for a flow velocity of U ¼ 0.20Ucr, the bifurcation point is reduced to a
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Fig. 2. Comparison of the static post-critical path with previous works. , Present; , Ref. [8]; , Ref. [4]. For the results from Ref.

[8], the gray line represents unstable points and the black line represents stable points.

Table 1
Comparisons of natural frequencies (o0) for the fluid-filled shell.

Mode (m,n) Frequency (Hz) Present (Hz) Difference (percent) with Ref. [8]

Sanders–Koiter Ref. [8] Donnell Ref. [8]

(1,5) 260.75 271.26 271.25 0.00

(1,10) 838.75 851.75 851.54 0.02

(3,5) 1165.02 1185.09 1185.09 0.00

(1,0) 1061.91 1091.26 1091.26 0.00

(3,0) 2045.45 2049.77 2049.77 0.00

(5,0) 2529.15 2531.03 2531.02 0.00

(7,0) 2943.56 2944.68 2944.68 0.00

(9,0) 3457.34 3458.12 3458.12 0.00
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value of P/Pcr ¼ 0.925 and the folding point goes down to P/Pcr ¼ 0.241. For U ¼ 0.40Ucr the bifurcation point is further
reduced to P/Pcr ¼ 0.831 and there no longer exists a physically meaningful folding point. For the same load level, the large-
amplitude displacements are higher as the flow velocity increases. The results in Fig. 3 show the great influence of the flow
velocity on the nonlinear behavior of the shell. Not only the critical load is reduced, but the hysteresis is accentuated.

Fig. 4 shows the combined effect of flowing fluid and imperfections on the response of the axially loaded cylindrical
shell. Fig. 4(a) illustrates the nonlinear responses of the imperfect shell, considering a flowing fluid with U ¼ 0.20Ucr and
varying levels of imperfection in the form of the fundamental buckling mode. The results are compared with the response
of the perfect shell with U ¼ 0.0. Increasing the imperfection magnitude, the value of the limit point in the nonlinear path is
reduced considerably. For example, for X1,1 ¼ 0.2, the value of the upper limit load (load carrying capacity of the imperfect
shell) goes down to P/Pcr ¼ 0.746, which corresponds to a reduction of about 22 percent in relation to the perfect shell. In
contrast, the value of the lower folding point does not change significantly with increasing level of imperfection. In Fig. 4(b)
the nonlinear post-critical paths are plotted for U ¼ 0.20Ucr, and varying imperfection components. When imperfections in
the first and main axisymmetric mode are considered (X1,1 ¼ 0.2, X0,2 ¼ 0.2), the limit point goes down to P/Pcr ¼ 0.663.
This value is about 7 percent lower than the limit point with imperfection only in the fundamental mode (X1,1 ¼ 0.2). This
shows that an imperfection in the form of the nonlinear displacement field, that is, including the linear vibration mode plus
the main axisymmetric component with twice the number of waves in the axial direction, leads to higher imperfection
sensitivity. If imperfection is considered in higher modes, the limit point load increases instead of decreasing, showing that
the nonlinear dynamics is sensitive to the form of imperfection. Fig. 4(c) provides a curve depicting the imperfection
sensitivity of the upper limit load. As can be seen, the flow reduces the value of the limit load as compared to the curve with
only static fluid; and, as the magnitude of imperfection increases, the value of the limit load is strongly reduced.

One must keep in mind that, due to the fabrication process, installation and environment, cylindrical shells are
subjected to complex imperfection patterns. However, as shown by Batista [32] through the expansion of mapped
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Fig. 3. Post-critical paths of the perfect shell for increasing fluid flow velocity. , U ¼ 0.0; , U ¼ 0.20Ucr; , U ¼ 0.40Ucr.
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imperfections of several thin shell surfaces in Fourier series, the pattern is usually dominated by modes with long
wavelengths in the axial direction similar to the buckling mode. This is also observed in the large collection of experimental
data stored in the initial imperfection data bank at Delft University of Technology [33]. So, it is expected that the nonlinear
response will be dominated by these components, which explains the low buckling values obtained experimentally [1,31].
Also, the unsteady component of the fluid flow can be viewed as a kind of imperfection.
3.3. Dynamic analysis without external force

In Fig. 5 the frequencies, parameterized in relation to the natural frequency of the empty shell (o0e ¼ 3165.93 rad/s), are
plotted as a function of the vibration amplitude of the first mode, and imperfections are considered only in the first mode,
x1,1. Fig. 5(a) displays the frequency–amplitude relation of the perfect shell with no static pre-load, considering both empty
and fluid-filled shell with varying flow velocity. As one can observe, comparing with the response of the empty shell, for a
quiescent fluid, the natural frequency of the shell is reduced and the degree of the softening nonlinearity increases. When
the curve bends back, due to large flexural deformations, large-amplitude displacements are associated with smaller
frequency values. If fluid flow is considered, for example U ¼ 0.20Ucr, the natural frequency of the shell is reduced by about
3 percent, and the softening character of the nonlinear response increases even more. For U ¼ 0.40Ucr, the shell shows a
stronger softening behavior with no bending back. In Fig. 5(b) the frequency–amplitude relations are plotted for an
imperfect shell and no static pre-loading. The initial geometric imperfections do not have a great influence on the natural
frequencies, but they change the degree of nonlinearity of the response. The initial branch of the curves displays a more
pronounced softening behavior as the level of imperfection is increased; however, after the folding point, the amplitudes
are smaller with increasing imperfection.

Figs. 5(c) and (d) show the effect of the static pre-loading (Pe ¼ 0.50Pcr) on the natural frequency of the perfect and
imperfect shell. In Fig. 5(c) the natural frequencies are reduced due to the influence of the static load and also the softening
of the curve is highly enhanced. Finally, Fig. 5(d) shows the effect of initial imperfections in the first mode for the pre-
loaded shell. In this case, the imperfect curve converges to the path of the perfect shell but the natural frequencies are
reduced by the imperfection.

Fig. 6 shows the variation of the natural frequencies of the shell with the flow velocity and imperfection level (Pe ¼ 0.0).
The natural frequencies are parametrized in relation to the natural frequency of the fluid-filled shell, o0. Imperfections are
considered to have the form of the corresponding linear vibration mode with X1,1 ¼ 0.4, 0.6 and 0.8, respectively. In this
case the influence of the initial geometric imperfections is smaller than the influence of the flow velocity. For example, for
an imperfection in the first mode, X1,1 ¼ 0.4, the frequency ratio is o/o0 ¼ 0.99, while for X1,1 ¼ 0.8, the frequency ratio is
o/o0 ¼ 0.97. As the flow velocity increases, the natural frequencies decrease, becoming zero at the critical velocity value;
this is a function of the imperfection magnitude. For an imperfection equal to X1,1 ¼ 0.4 the critical velocity ratio is
U/Ucr ¼ 0.98, and for X1,1 ¼ 0.8 the critical velocity ratio goes down to U/Ucr ¼ 0.96.
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3.4. Dynamic analysis including harmonic axial load

Now the simultaneous effect of the harmonic axial load, i.e., Pda0, and of the flow velocity on the nonlinear vibrations
of the shell is considered.

First, the parametric instability of the perfect shell is studied considering for each value of the excitation frequency, o,
an increasing axial loading, Pd, cf. Eq. (1). Fig. 7 shows the numerically obtained bifurcation boundaries for a slowly
evolving system in the frequency/excitation–amplitude control space for the perfect shell. The shell is axially pre-loaded
with Pe ¼ 0.30Pcr, the fluid flow velocity is equal to either U ¼ 0 or U ¼ 0.20Ucr. The frequency of excitation is parametrized
by the natural frequency of the fluid-filled shell (o0 ¼ 1704.33). The natural frequency of the pre-loaded shell (Pe ¼ 0.30
Pcr) is equal to o0L ¼ 1384.63 rad/s (o0L/o0 ¼ 0.81). The parametric instability boundary is the limit where small
perturbations from the trivial solution will result in an initial exponential growth in the oscillations. This boundary is
obtained by increasing slowly the excitation amplitude of Pd while holding the frequency constant. The parametric
instability boundary is composed of various curves, each one associated with a particular bifurcation event. The first
important instability region is associated with the direct resonance zone, o/o0 ¼ 0.81, when the frequency of excitation is
equal to the lowest natural frequency of the pre-loaded shell (o ¼ o0L). The second well to the right is associated to the
principal parametric instability region and occurs around o/o0 ¼ 1.62, when the frequency of excitation is equal to two
times the natural frequency of the pre-loaded shell (o ¼ 2o0L). The upper region of the instability boundary, between the
first and second regions, shows a kind of fractal boundary. When comparing the boundaries of the system with and without
flow, it is possible to observe that the fluid velocity has the effect of shifting all the instability boundaries to the left. So, the
flow velocity may increase or decrease the critical load, depending on the value of the forcing frequency. For axial static
pre-loads lower than the minimum post-critical load, which corresponds to a saddle-node bifurcation (see Figs. 2–4), the
shell potential energy has only one potential well and after the parametric instability various types of motion may be
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observed within this well. For static load levels higher than the minimum post-critical load, the shell potential energy
displays three potential wells [34] and, after the parametric instability occurs, the system may remain within the pre-
buckling well, escape to a post-buckling well or exhibit large cross-well motions.

Fig. 8 shows typical bifurcation diagrams associated with the two main instability regions due to the variation of the
axial load, for different values of the excitation frequency and U ¼ 0.20Ucr. The shell is axially pre-loaded with Pe ¼ 0.30Pcr.
This value is higher than the minimum post-critical load for the adopted conditions. These bifurcation diagrams are
obtained by the brute-force method, together with continuation techniques by increasing the forcing amplitude. The
bifurcation diagrams depicted in Figs. 8(a)–(c) are typical of the resonance region around o/o0 ¼ 0.81. In Fig. 8(a), after the
critical point, Pb ¼ 0.61, the trivial solution becomes unstable and the system displays large-amplitude cross-well chaotic
oscillations. In this case, close to the bifurcation point, any small perturbation leads to escape from the pre-buckling well
(dynamic buckling) and the onset of complex aperiodic motions. In contrast, in Figs. 8(b) and (c), for the slowly evolving
system, the trivial solution loses its stability and gives rise to a small-amplitude 1T stable periodic motion within the pre-
buckling well. This solution grows in amplitude until the escape load, which corresponds to the complete annihilation of
the basin of attraction of this 1T solution, is reached [34]. Beyond this point, only large cross-well motions, such as those
depicted in Fig. 8(a), are observed. In the notation used in the paper, a kT periodic motion means a harmonic (k ¼ 1) or
subharmonic oscillation (k41) with a period of k times that of the forcing period T. Another branch of 1T solutions also
emerge from the critical point, Pb, which is symmetric to the ones shown in Figs. 8(b) and (c).

The bifurcation diagrams depicted in Figs. 8(d)–(f) are typical of the principal region of parametric instability (around
o/o0 ¼ 1.62). Fig. 8(d) shows a typical bifurcation diagram of the descending branch of this region (oo2o0), o/o0 ¼ 1.50.
In this case, the parametric bifurcation point corresponds to a subcritical bifurcation of the trivial solution, giving rise to a
2T unstable periodic motion. This unstable solution becomes stable at a saddle-node bifurcation. So, when the load reaches
the critical value, depending on the initial conditions, the response may jump to the stable period-two solution within the
pre-buckling well or escape from this well. In this case escape is indeterminate. In fact, between the load associated with
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the saddle-node bifurcation and that of the subcritical bifurcation, two stable solutions coexist within the pre-buckling
well. Fig. 8(e) corresponds to the deepest point of this well and a limit case between subcritical and supercritical
bifurcation. After this point, along the ascending stability boundary in Fig. 7, as illustrated in Fig. 8(f) for o/o0 ¼ 1.70, the
parametric bifurcation point corresponds always to a supercritical bifurcation of the trivial solution and describes a 2T

stable periodic motion. This sequence of bifurcations is typical of softening systems under parametric excitation [35].
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Fig. 9 depicts the bifurcation diagrams of the imperfect shell with X1,1 ¼ 0.2. For comparison, these diagrams are plotted
for the same values of excitation frequency as those in Fig. 8. The shell is again pre-loaded axially with Pe ¼ 0.30Pcr and the
internal fluid flow velocity is U ¼ 0.20Ucr. When comparing the bifurcation diagrams in Fig. 8 with the corresponding ones
in Fig. 9, the expected influence of the initial geometric imperfections on the nonlinear behavior of the shell and critical
loads becomes clear. One must keep in mind that in this case the trivial solution no longer exists due to the flexural
deformations induced by the imperfection. A zoomed version of the non-trivial solution is shown in Fig. 10, where the
initial branches of the bifurcation diagrams are obtained by continuation techniques [26].

Figs. 9(a)–(c) and 10(a)–(c) show the bifurcation diagrams related to the instability region around o/o0 ¼ 0.81. In
Fig. 9(a), as the axial load increases, a branch of non-trivial 1T stable periodic motion within the pre-buckling well appears
with the first bifurcation occurring at Pd/Pcr ¼ 0.25, where a small jump occurs. As shown in Fig. 10(a) there is here a small
loop with two saddle-node bifurcations separating two branches of 1T stable solutions. However, the solutions remain
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within the pre-buckling well. Finally, as the axial load increases, the ensuing small-amplitude 1T solution becomes
unstable and the shell escapes from the pre-buckling well, displaying large-amplitude chaotic motions. Figs. 9(b) and 10(b)
correspond to the deepest point of this instability region and no bifurcation is observed previous to escape. The response
corresponds to a small-amplitude 1T oscillation induced by the imperfection. Again, after escape, the shell exhibits large
cross-well chaotic oscillations. In Fig. 9(c) the shell displays almost the same behavior as that described in Fig. 9(b).

Figs. 9(d)–(f) show the bifurcation diagrams related to the principal parametric instability region at o/o0 ¼ 1.62. In
Fig. 9(d) the shell displays a subcritical bifurcation similar to that in Fig. 8(d), but the bifurcated steady-state solution is no
longer symmetric with respect to the x1,1 coordinate, as in Fig. 8(d). This can be clearly observed in Fig. 10(d). This loss of
symmetry is another effect of the geometric imperfections on the dynamic behavior of the shell. In Fig. 9(e), the bifurcation
is now supercritical with practically the same value of the parametric instability load as in the perfect case. However, the 2T
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solution after a small increase in the forcing magnitude collapses to a 1T solution that remains stable up to the escape load.
Finally, in Fig. 9(f), as the value of the axial load increases a local bifurcation occurs at Pd/Pcr ¼ 0.44, rather different from
that observed in Fig. 8(f), giving rise to two branches of 1T solutions, one stable and one unstable, as illustrated in Fig. 10(f).
From the results presented in Figs. 8–10, one can observe that the imperfection sensitivity of the escape load as well as the
load at which the first bifurcation occurs in the pre-buckling well, Pb, depend not only on the imperfection level, as in the
static case, but also on the forcing frequency.

Fig. 11 displays the effect of the fluid velocity on the nonlinear oscillations of a perfect shell with no static pre-loading,
subjected to a dynamic load of constant magnitude equal to Pd ¼ 0.7Pcr. The bifurcation diagrams are plotted considering as
control parameter the fluid velocity for three different ratios of the frequency of excitation: o/o0 ¼ 0.90, 1.34 and 1.80,
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where o0 ¼ 1704.36 rad/s is the natural frequency of the fluid-filled shell. The bifurcation diagrams considering varying
flow velocity are obtained by increasing and decreasing the flow velocity ratio between 0 and 1.2, so coexisting solutions
can be obtained. It is important to notice that not all possible coexisting solution branches are obtained by this process.
In fact, to be sure that all co-existing solutions are obtained one should investigate all initial conditions in the region
of interest in the 12-dimensional phase-space, which is an almost impossible task. The objective of the present study
is only to detect the changes caused by static pre-load, imperfections and flow velocity when one control parameter
varies slowly.

Fig. 11(a) depicts the bifurcation diagram for o/o0 ¼ 0.90. As can be observed in the inset diagram, the shell starts with
trivial oscillations and, at a certain point, it exhibits a jump to a 1T small-amplitude oscillation which decreases in
magnitude as flow velocity increases and, after a certain value of the fluid flow velocity, the response becomes again trivial.
The bifurcations connected with these events are shown in the inset zoomed figure, where the first bifurcation corresponds
to a subcritical bifurcation. As the flow velocity increases still further, the shell escapes and oscillations become chaotic and
the shell exhibits large cross-well motions. If the frequency of excitation is increased to o/o0 ¼ 1.34, the shell exhibits a
different behavior, as shown in Fig. 11(b). In this case, the first bifurcation point corresponds to a subcritical bifurcation, and
the trivial solution loses its stability giving rise to a 2T unstable periodic motion. The jump is indeterminate, because the
response may stabilize within the pre-buckling well or jump to a remote attractor. Along the post-critical branch of the
bifurcation diagram several bifurcations occurs as the flow velocity increases. They correspond to pitchfork bifurcations,
giving rise to two stable 2T coexisting oscillations. However, in each case, the new solution disappears just after a small
increase in the control parameter. If flow velocity is further increased, the 2T solution decreases in amplitude, a small
chaotic window is observed and, after that, only the in-well trivial solution and large-amplitude solutions coexist. Fig. 10(c)
shows the bifurcation diagram for o/o0 ¼ 1.80. The solution starts with two different attractors, one of period 2T, inside
the pre-buckling well, and the trivial solution. As the flow velocity increases, the 2T solution disappears and only the trivial
solution remains; at a certain value of the flow velocity, the shell jumps to a 1T large-amplitude solution. The two branches
related to large-amplitude cross-well motions are associated with two 1T stable solutions. The results show that a shell
under varying flow velocity may display several bifurcation phenomena, giving rise to a rich and complex dynamics. The
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existence of several solution branches may lead to undesirable jumps between competing solutions in the presence of
small external disturbances.

Fig. 12 shows the simultaneous effect of the static pre-load (Pe ¼ 0.20Pcr,) and flowing fluid on the nonlinear vibrations
of the perfect shell subjected to a harmonic loading of constant magnitude (Pd ¼ 0.7Pcr). The bifurcation diagrams are
plotted for the same frequency ratios selected in Fig. 11: o/o0 ¼ 0.90, 1.34 and 1.80, where, as before, o0 is the natural
frequency of the fluid-filled shell. Comparing Figs. 11 and 12, one can observe almost the same general behavior, but critical
loads and the length of the stable branches are rather different, illustrating the influence of static pre-load on the shell
dynamics.

Fig. 13 displays the effect of geometric imperfections on the nonlinear dynamics of the pre-loaded shell, considering an
increasing fluid flow velocity. The bifurcation diagrams are plotted for the same loading conditions as those of Fig. 12, but
now an initial geometric imperfection with magnitude equal to X1,1 ¼ 0.2 is considered.

In Fig. 13, as in previous cases, the trivial solution no longer exists due to the presence of geometric imperfection (see
zoomed insets of the initial branches in Fig. 13). For o/o0 ¼ 0.90, Fig. 13(a), the shell displays initially a 1T small-amplitude
oscillation and, at a certain critical value, escape occurs and the solution becomes chaotic. As the fluid flow velocity
increases still further, the chaotic vibrations destabilize and a large-amplitude 1T attractor appears. A similar behavior is
observed in Fig. 13(b), for o/o0 ¼ 1.34. However, in this case, three chaotic windows are observed separated by small-
amplitude periodic motion. In Fig. 13(c), for o/o0 ¼ 1.80, the bifurcation diagram exhibits a stable 1T solution till escape to
a large-amplitude 1T cross-well motion. Again, the effect of imperfections is quite remarkable, changing completely the
shell dynamics.

In the presence of competing solutions, the final behavior of the shell is a function of the initial conditions. The influence
of initial conditions can be appraised through the basins of attraction for an appropriate set of initial conditions.
To illustrate this, Fig. 14 displays the evolution of the basins of attraction for increasing values of dynamic load, considering
o/o0 ¼ 1.50, Pe ¼ 0.20Pcr, U ¼ 0.20Ucr. These results are associated with the bifurcation diagrams of Figs. 8(d) and 9(d) and
cover the same set of initial conditions.



ARTICLE IN PRESS

0.0 0.4 0.8 1.2

0.0 0.4 0.8 1.2

U/Ucr

U/Ucr

U/Ucr

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

ξ 1,
1

ξ 1,
1

ξ 1,
1

0.0 0.2 0.4 0.6 0.8

-20.0

-10.0

0.0

10.0

20.0

-20.0

-16.0

-12.0

-8.0

-4.0

0.0

4.0(c)

(b)(a)

Fig. 13. Effect of flow velocity (U) on the non-linear dynamics of the shell for Pe ¼ 0.20Pcr, Pd ¼ 0.7Pcr, and o0 ¼ 1704.36 rad/s. Imperfect shell with

X1,1 ¼ 0.2. (a) o/o0 ¼ 0.90, Ub ¼ 0.63; (b) o/o0 ¼ 1.34, Ub ¼ 0.42; (c) o/o0 ¼ 1.80, Ub ¼ 0.21. Ub represents bifurcation flow.

Z. del Prado et al. / Journal of Sound and Vibration 327 (2009) 211–230226
Figs. 14(a)–(c) correspond to cross-sections, for the perfect shell, of the 16-dimensional phase space by the x1;1 � x0;1

plane (the other 14 phase space coordinates are taken as zero). In these figures, the black area corresponds to the trivial
solution, the dark gray area to small-amplitude non-trivial solutions within the pre-buckling well, and the white area to
large-amplitude cross-well solutions. In Fig. 14(a), for Pd ¼ 0.10Pcr, only small perturbations of the trivial solution (small
values of the initial conditions) around the stable axisymmetric initial configuration will lead with certainty to the trivial
solution. For larger perturbations, the basin of attraction becomes fractal and the initial conditions could lead to either the
trivial or large-amplitude solutions. In this case the shell displays a high sensitivity to initial conditions. As the axial load
increases (see Fig. 14(b) for Pd ¼ 0.30Pcr), the trivial solution and a 2T small-amplitude solution coexist within the pre-
buckling well. Again, there is a black continuous region surrounding the trivial solution, but smaller than that in Fig. 14(a).
This means that the degree of safety of the trivial solution decreases, and unwanted oscillations may occur in response to a
larger set of initial conditions. If small-amplitude 2T oscillations are allowed in design, the stable region is constituted by
the sum of the black and gray areas. Again, for large perturbations, the transient perturbed solution may be attracted to
one of the three different attractors, leading to high sensitivity to initial conditions. For larger values of the axial load (see
Fig. 14(c) for Pd ¼ 0.50Pcr), the trivial solution disappears and only the small-amplitude 2T solution within the pre-buckling
well and the large-amplitude solution remain. All cross-sections display symmetry with respect to the x1,1 coordinate, this
is a characteristic of the perfect shell.

Figs. 14(d)–(f) correspond to cross-sections of the 16-dimensional phase space by the x1;1 � x0;1 plane for the imperfect
shell, considering the imperfection amplitude as X1,1 ¼ 0.2 and the same load levels as in Figs. 14(a)–(c). The black area
corresponds to the non-trivial 1T small-amplitude solution of the imperfect shell, the dark gray area, to the small-
amplitude 2T solution and the white gray area to large-amplitude cross-well solutions (see Fig. 9(d)). Comparing Figs. 14(a)
and (d), one can see that, due to the imperfection, the black area decreases slightly and the basin becomes distorted with
respect to the x1,1 coordinate. Comparing Figs. 14(b) and (e), the distortion of the basin increases and the safe region related
to the 1T solution or the two in-well motions decreases, increasing the probability of escape from the pre-buckling well.
Increasing the value of the axial load still further (see Fig. 14(f)), the whole basin area becomes fractal and greatly distorted,
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Fig. 14. Basins of attraction for Pe ¼ 0.30Pcr, U ¼ 0.20Ucr, o/o0 ¼ 1.50 and o0 ¼ 1704.36 rad/s. Perfect shell: (a) Pd ¼ 0.10Pcr; (b) Pd ¼ 0.30Pcr; (c)

Pd ¼ 0.50Pcr. Imperfect shell with X1 ¼ 0.2: (d) Pd ¼ 0.10Pcr; (e) Pd ¼ 0.30Pcr; (e) Pd ¼ 0.50Pcr. Perfect: ’ trivial solution, non-trivial solution within the

pre-buckling well and & large-amplitude cross-well solution, imperfect: ’ small-amplitude in-well solution, medium-amplitude in-well solution and

& large-amplitude cross-well solution.
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showing a high sensitivity to initial conditions. It is clear from the results that, in order to evaluate the safety of a given
solution, not only a detailed analysis of the bifurcations is necessary but also an analysis of the topological characteristics of
the basins of attraction. This is particularly important when several solutions coexist for a given set of parameters.

Finally, Fig. 15 displays the evolution of the basins of attraction for increasing values of flowing fluid velocity considering
o/o0 ¼ 1.34, Pe ¼ 0.20Pcr, Pd ¼ 0.70Pcr. These results are associated with the bifurcation diagrams of Figs. 12(b) and 13(b)
and cover the same set of initial conditions.
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Fig. 15. Basins of attraction for Pe ¼ 0.20Pcr, Pd ¼ 0.70Pcr, o/o0 ¼ 1.34 and o0 ¼ 1704.36 rad/s. Perfect shell: (a) U/Ucr ¼ 0.20; (b) U/Ucr ¼ 0.40; (c)

U/Ucr ¼ 0.80. Imperfect shell with X1 ¼ 0.2: (d) U/Ucr ¼ 0.20; (e) U/Ucr ¼ 0.40 (f) U/Ucr ¼ 0.80. Perfect: ’ trivial solution, non-trivial solution within the

pre-buckling well and & large-amplitude cross-well solution, imperfect : ’ small-amplitude in-well solution, medium-amplitude in-well solution and

& large-amplitude cross-well solution.
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Figs. 15(a)–(c) correspond to cross-sections for the perfect shell, while Figs. 15(d)–(f) correspond to cross-sections for
the imperfect shell, considering again X1,1 ¼ 0.2. The color scheme is similar to the one used in Fig. 14. The results illustrate
the simultaneous influence of varying fluid velocity and imperfections on the global behavior of the shell.

4. Conclusions

In the present paper the combined effect of initial geometric imperfections and of internal flowing fluid on the nonlinear
oscillations and instabilities of cylindrical shells under static and dynamic axial loads has been considered. The influence of
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the static compressive force on the nonlinear oscillations and escape mechanisms from the pre-buckling potential well has
also been investigated.

As demonstrated in the past, the results show that imperfections have a large influence on the static buckling load of the
shell. This deleterious effect on the load capacity of the shells increases with the fluid flow velocity. On the other hand, the
influence of geometric imperfections on the natural frequencies and on the nonlinear amplitude–frequency relation is
smaller.

For the shell under the combined effect of dynamic axial load and fluid flow, parametric instabilities (resonances) occur.
The results show that the parametric instability regions are affected by the imperfections and the magnitude of the flow
velocity. In this case, the critical load is affected by the forcing frequency, and the imperfection may increase or decrease
the parametric instability load. The flow velocity also has a marked influence on the instability boundaries, shifting the
stability boundaries to a lower frequency range and decreasing the critical load. The combined effect of geometric
imperfections and fluid flow can be understood through a detailed parametric analysis of the bifurcation diagrams. This
allows the identification of the type of bifurcation involved and the multiplicity of solutions.

The static pre-load also has a great influence on the results by modifying the potential function of the shell. For static
load levels higher than the minimum post-critical load of the shell with fluid flow and lower than the respective critical
load, two new wells appear, and escape from the pre-buckling well may occur. Again the critical escape load depends on
the static and dynamic load, fluid velocity and initial imperfections. Due to the presence of coexisting attractors, the global
behavior of the system can be understood only by an analysis of the basins of the different attractors. The results show that
the degree of safety and the whole basin topology change radically under the presence of even small imperfections.
Disregarding the effect of imperfections may lead to an erroneous assessment of the degree of safety and robustness of a
given configuration, which may have disastrous consequences in engineering practice.
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[27] P.B. Gonc-alves, Z.J.G.N. Del Prado, Low-dimensional Galerkin models for non-linear vibration and instability analysis of cylindrical shells, Non-linear
Dynamics 41 (1–3) (2005) 129–145 (Special issue on Reduced order models: methods and applications).

[28] M. Amabili, A. Sarkar, M.P. Paı̈doussis, Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper
orthogonal decomposition method, Journal of Sound and Vibration 290 (2006) 736–762.
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